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Abstract. Deep Learning models such as Convolutional Neural Net-
works (CNNs) are particularly successful in computer vision tasks. They
have proven to be tremendously effective and popular in the last decade,
reaching great accuracy in tasks such as image classification and ob-
ject recognition. Despite their success, it is well known that conveying
what the model learnt to humans remains challenging. This is due to
the fact that a CNN is still mostly a black-box model, and images are
very rich input data. In this work, we build upon the idea of disentan-
gled representation produced from a trained CNN, and explore how such
disentangled representation can be used to describe what the model has
learned in terms of semantic concepts. Specifically, we aim at providing
a ranked list of the concepts that are related to both a specifica instance
or image (local explainability) and a class (global explainability). In this
preliminary work we use a simple linear classifier for concept ranking.
Results are promising since we reached 95% precision at both local and
global level. This indicates potential in developing our idea further by
leveraging external knowledge bases to associate and validate specific
properties and relations among the ranked concepts at both local and
global level as discussed in the final section of this paper.

Keywords: Explainable AI - Disentangled Representation - Convolu-
tional Neural Network

1 Introduction and Overview

Computer Vision is a branch of Artificial Intelligence that looks into how com-
puter programs can interpret, represent, and act on visual inputs (such as pic-
tures and videos). Deep Learning models such as Convolutional Neural Networks
(CNNs) are specifically tailored to computer vision tasks, and in the last decade
they have become remarkably successful and popular, achieving incredible accu-
racy in tasks such as image classification and object detection.

* Supported by Science Foundation Ireland - Grant No. 18/CRT /6223



2 Eric Ferreira dos Santos and Alessandra Mileo

Despite their success, CNNs are still mostly a black-box model, in that how
and what the model learns is intelligible to the users and cannot be easily pre-
sented in human terms. The difficulty in generating a human-understandable
explanation of the model outcome is hindering the use of CNNs in critical envi-
ronments such as diagnostic imaging, disaster management and security surveil-
lance to mention a few. In these scenarios it is crucial to understand how the
model came to a given outcome and what the model has learned from the train-
ing data, not only to identify and correct mistakes, but also to detect potential
bias in the data or the model.

The majority of approaches for interpreting directly the output of a trained
CNN in a classification task have been focusing on the use of visual cues and
more in general attention-based methods. For example, work in [8] and [5] have
highlighted image pixels or areas contributing to a specific classification. [8]
describes a technique for visualising how the model behaves in each layer for
a particular image. Both approaches aid in localising which parts of the image
were relevant to a specific class. However, because the image concepts are not
declared in the image or the dataset, this visualisation does not represent them,
and there is no guarantee that the model will highlight the same parts for other
images in the same class.

In order to tackle the limitation of visual approaches, other explainability
methods have been proposed in recent years, and the field of Explainable AI has
began to be characterised in different survey papers.

Among others, [4] examines many strategies that employ textual justification
when textual data is learnt and coupled with visual data, increasing the model’s
explainability. This method was utilised in the medical domain to clarify cate-
gorisation by combining image and textual diagnostics. Other techniques include
simplification, which involves creating a white-box model from a complex model
to achieve performance while simplifying the explanation. Feature relevance is
another method which consists of considering each feature’s value and using it
to describe the learning process.

Another perspective in [2] is to explore using human expertise to explain
how the model is learnt in a way that a layperson may comprehend, explained
is rooted in real-world principles. This survey also provides links to the code for
each approach discussed.

Based on the classification in these surveys, our approach would relate to
the feature-relevant method, which in computer vision we would convert to real-
world concepts. Ranking them, we intend to present the concepts more relevant
from a singular image and to an entire class. In further work, we would combine
this approach with the common-sense knowledge database, creating explanations
that an Al system and a regular person can understand.

In this study, we will look at how a basic linear classifier can be used to rank
concepts that characterise not only an instance, but more generally a class from
local disentangled representations, which was not provided in previous works.
We aim to provide a semantic explanation of what the model has learned in
terms of the most relevant concepts. This is only the first step towards providing
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an alternative human-understandable and self-explainable representation of a
trained CNN model. In fact, we plan on building on the ability to not only
identify semantic concepts as in disentangled representations, but also rank them
based on their semantic relevance to an instance or a class (which is our key
contribution in this work). Leveraging such ranking, we believe we can then go
one step further in extracting semantic relations and subsequently learning logic
rules from deep representations, as discussed in the final section of this paper.

The rest of the paper is structured as follows: in Section 2 we discuss related
paper that specifically introduce and use the disentangled technique for im-
proving model interpretability in image classification tasks; Section 3 describes
our approach, specifically how we retrieved the local and global disentangled
concepts from the trained model; our preliminary experimental evaluation and
discussion of results is provided in Section 4, where we also outline how the
evaluation should be extended and strengthened; we conclude in Section 5 pre-
senting our ongoing research which builds upon the work in this paper towards a
deeper understanding of the deep CNN model in a self-explainable and human-
understandable way.

2 Related Work

Disentangled representation is a method that divides each characteristic (of an
image) into carefully specified variables and encodes them as distinct dimen-
sions. The idea is to emulate humans’ fast intuitive process. ! This method
can characterise semantic concepts gained by a model throughout its training
phase. This section will list the principal works that employed this strategy to
characterise concepts learned in deep representations: Network Dissection, Deci-
sion Trees-based approach to learn disentangled filters and Concept Activation
Vectors.

Network Dissection. Networks Dissection is a method for extracting meaning
from each layer or filter, using the distillation approach to explain a CNN. Au-
thors in [11] claim that a DNN may spontaneously learn disentangled representa-
tions. In order to demonstrate that, they developed a framework for connecting
human notions to each filter in a CNN model (Figure 1). The objective is to
provide meaningful labels to individual filters. The initial stage was to generate
the Broden dataset, which contains pixel-annotated low-level notions like colours
and high-level concepts like objects. They then used a trained model and passed
through it the Broden dataset, to assess each filter and comparing the binary
map from each picture and each filter activation map. If the convolutional filter
is strongly activated in parts of the picture containing a human-labelled notion,
authors claim that the filter is “searching for” that idea or concept.

! https://deepai.org/machine-learning-glossary-and-terms/disentangled-
representation-learning
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Fig. 1. Network Dissection framework ([11])

Examining different CNN designs, authors discovered certain important no-
tions, such as the number of unique concepts for each layer in each architecture
and the number of objects increasing into deeper convolutional layers.

Decision Trees Approach. In [10], the authors suggested learning a decision tree
from a trained CNN, detailing the exact reasons for categorisation at a semantic
level. The proposed technique describes which image components activate, which
filters for categorisation and how much each part contributes. In this approach
the authors use simplification method, to extract from a complex model a simple
explanation.

The first part of the approach is training a CNN with disentangled filters on
the high convolution layers to each filter learn a specific concept and associate
each one to semantic meaning since they do not have any annotations of the
concepts. This approach is presented in [9], where a loss function is applied for
each filter in the top convolutional layer.

The trained disentangled filters extract information from each image and
input it into a decision tree that understands its composition. There is no link
between a filter and a human notion at this time, thus the authors use other
datasets to assign a concept to a specific filter. They concentrated on a single
topic (bird) and only used concepts relating to that issue. This method differs
from [11] because it does not employ an extensive concept dataset to assign the
concept to each filter. It can, however, be used to search for ideas that are not
available in the Broaden dataset.

Concept Activation Vectors. Another relevant work in [3] proposes determining
how human notions influence categorisation results. Authors defined and devel-
oped the CAV (Concept Activation Vectors) to transform a neural network’s
internal state into human-friendly notions. The method is useful because a hu-
man concept, such as “stripes,” may be shown to impact the “zebra” class.
The core idea is retrieved from a trained model, a vector that characterises
a particular concept, and then a directional derivative is used to assess concept
sensitivity for a specific class. This method gives a local explanation for a specific
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concept within a class, which may be required if the user already understands
which concepts are applicable to a given class and wants to identify among a set
of such concepts which ones are more descriptive for that class from the point of
view of the deep representation, this validating which concepts among the given
ones are affecting a classification most.

The papers and approaches discussed above provide some explanations for
CNNs, incorporating human notions that might assist a non-specialist in de-
termining how the model learnt a particular categorisation. These techniques,
however, were not employed to describe a global classification, such as how the
model understands a whole class. In this paper, we suggest using the disentan-
gled approach described in [11] to determine how the classes may be interpreted
using a global ranking of semantic concepts. We use a different dataset ([7]) to
examine the ideas used to categorise a specific image. The model processed the
dataset, and the total of each activation map of a unit in the final layer was used
as input for an SVM classifier. We then use the top-ranked unit weighted by the
SVM model for a particular image to order the identified concepts. Section 3
describes our naive technique in more detail.

3 Extracting Concepts for Action Classification

This section will outline the approach for concept extraction and ranking we
propose in this paper.

The first step in this process is to extract semantic concepts about a class
or a single instance from a trained CNN model using transfer-learning on an
action classification task on a dataset containing forty actions. We decided to
build upon previous research [11] that has already obtained promising results on
semantic concept identification for a trained CNN model. One of the outcomes
of such work is the ability to quantify how interpretable a CNN is by discovering
how individual hidden units align to semantic concepts at each hidden layer.
Concepts were identified as being part of six categories: object, part, material,
colour, texture and scene. The architecture that identified more unique concepts
among those tested was ResNet-152, as indicated in Figure 2; therefore this is
the architecture we adopt.

We extend this technique for concept detection by identifying and connecting
such concepts to output classes as well as individual input images (or instances).
We chose to focus on the last CNN layer to maximise the number of unique high-
level semantic concepts discovered; once more different concepts are harnessed,
more concepts may be connected with local or individual examples.

We start from the semantic concepts identified by Network Dissection[11]
from the trained CNN model and build upon the relationship between the con-
volutional filter and the semantic concept from the Broden[l] dataset. A transfer-
learning approach makes it possible to adapt the Network Dissection method to
be used on different data sets (and classification tasks) and determine which fil-
ters are activated by each new input. With this approach, the concepts learned
from Network Dissection are extended to new input images: the top K highest-
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Fig. 2. Unique Detectors for each CNN Architecture ([11])

scoring filters for each input image are chosen as the identified concepts, consid-
ering the mean of each activation map.

Note that an activation map is a matrix that represents which image part
was activated after the convolution function. It can be represented by a matrix
Aprxn of the elements a;j,where M = 1..5 and N = 1..j. We define the mean of
the activation map matrix Mactivation_map as follows:

Z Z Qij
Mai =1g=1 (1)
Activation-map — #E
where #E is the number of elements of A.

We then rank the K filters from highest to lowest based on the mean acti-
vation map for each picture, assuming that the highest value identifies the most
representative concept contained in an image. Once the model has identified
other concepts for each image, the order of the pictures of the same class may
be readjusted.

As a result, the approach produces as output a list of K different semantic
concepts that are considered meaningful for each image. For the global concepts,
a linear classifier with model-extracted features is applied to the same dataset
for each class; subsequently, based on feature significance we determine which
semantic concepts are relevant for the global separation. As mentioned previ-
ously, the dataset used for the investigation is the Action40 dataset [7], which
contains action photos labelled for 40 different action classes.

As a first metric for evaluation, we assess a simple precision from the ranked
semantic concepts from local instances to the ranked semantic concepts for their
class using the list of top K high-scored concepts from local and global examples.
To do so, we compare the notions for each local example (image) belonging to
a specific category to the top concepts that best linearly separate the class. We
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consider the globally rated concepts to make sense with the local ones if at least
one concept is offered between them. The formula for this can be expressed as:

P. = ZClc,gc
‘ #Lc

where P, is the precision of the specific class ¢, Y Cj, 4. is the sum of the
instances where the global and local shared at least one ranked semantic concept
in the class ¢, and the #L. is the number of local instances that belongs to the
class c.

In this paper we assess the relationship between the top-ranked concepts from
local and global examples using this metric. This gives us an indication of how
well the global characteristics, separated linearly, reflect the semantic concepts
acquired by the model for each class. We are aware this is a simplistic metric
and we will discuss in the next section other possible variations that we will test
and compare in future work.

The experimental evaluation of the extracted concepts following this ap-
proach will be presented in the next section.

(2)

4 Experimental Evaluation

As mentioned in section 3, we build upon the Network Dissection technique to
extract local and global concepts. The task we consider in our investigation is
action classification (Action/0 dataset)?. The concepts associated to each filter
in the CNN model are provided by Network Dissection, which was trained on the
Imagenet dataset®, considering only a limited set of categories, namely object,
part, material and colour. We only collected the concepts identified in the CNN’s
last layer, which created 162 distinct concepts. Then, using a transfer-learning
approach, we used the Action40 dataset to capture the concepts learnt for this
data, based on the Network Dissection results.

The local semantic features from the new data were recovered using the mean
of the activation map from each filter in the final layer as per Formula 1. The
same formula was used for global concepts, i.e. concepts for each class, but this
time it is used as feature extraction for the classification input. Following the
intuition in [3] that meaningful higher-level concepts may be simpler to grasp,
we used the SVM linear classifier to detect such concepts per class. We ran
the algorithm using a 5-fold cross-validation, using the learning rate (C) equal
to 0.001%, and took the model with the best F1 score. The classification algo-
rithm produced the confusion matrix in Figure 3, which displays the precision
obtained for each class. The linear model achieved the precision of 80% in the
class separation (classification task).

2 http:/ /vision.stanford.edu/Datasets/40actions.html

3 https://www.image-net.org/download.php

4 Best results from a  grid-search  technique  using: https:/ /scikit-
learn.org/stable/modules/generated /sklearn.model_selection.GridSearchCV .html
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Fig. 3. Confusion Matrix from SVM classifier

Based on the top-ranked concepts extracted, we calculate the precision (For-

mula 2) between the images and their class in four different ways:

— Top 5 L - Top 1 G: The top 5 local concepts for each instance and the top

1 global concept for each class.

— Top 5 L - Top 5 G: The top 5 local concepts for each instance and the top

5 global concepts for each class.

— Top 5 L - Top 10 G: The top 5 local concepts for each instance and the top

10 global concepts for each class.

— Top 10 L - Top 10 G: The top 10 local concepts for each instance and the

top 10 global concepts for each class.

The rationale behind varying the number of top concepts is to determine how
many top global ranking concepts may best represent images from the same class.
We discovered that a linear classifier will provide the feature relevance depending
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on how successfully that feature separated the class, which is not always con-
nected to the top local concepts, for example, from the same class. This means
that in the model, the most common concepts provided in a group of images
from the same class are not necessarily chosen as the best representative char-
acteristics for that class. Therefore, we used this variation to precision between
the local and global concepts belonging to the same class.

The first assessment evaluated whether the top one global concept from a
particular class was present in the top five local concepts. Figure 4 shows that
we could not identify a relevant precision for the majority of the classes utilising
only the top 1 global concept. This behaviour supports the previous intuition
by emphasising that the feature relevance in a linear classifier is aimed at the
characteristics that best distinguish (or separate) the classes.

When we examine the precision between the top ten concepts in local and
global instances (Figure 5), we can observe that the precision improves signif-
icantly, demonstrating that the global top ten concepts are represented in the
local top ten concepts. Given that the model identified 162 different semantic
concepts, and our technique could identify a mean precision of 95% between
only ten ranking concepts, this is a significant result. The precision mean and
standard deviation for all classes for each different number of global and local
concepts are shown in Figure 6. Note that all the code is is available in an open
repository on github ® for reproducibility of results.

It is important to note that we only use precision as a quantitative measure
for our concept ranking method. This is because in this instance we only check
if global concepts are presented in local ones. Additional measures like recall
and F1 would not change this result but we agree that they could provide other
interesting insights. In order to further validate the proposed technique, we will
not only explore the insights provided by using alternative evaluation metrics,
but also compare results across different benchmark datasets.

In order to illustrate our outcome qualitatively with an example, we chose
one of the greatest and lowest precision classes, “cutting_trees” and “phoning”,
respectively. The class ”cutting_trees” had a significant separation result from
the linear classifier (98%) and obtained 100% precision between the global and
local concepts. Based on the feature significance from the linear model, the
global concepts for this class are: “snow”, “tree”, “bird”, “motorbike”, “house”,
“bicycle”, “plant” and “hand”. When we look at all of the photographs in the
same class, the top ten local concepts are: “house”, “tree”, “plant”, “bird”,
“person”, “bicycle”, “hand”, “motorbike”, “snow” and “food”.

This result demonstrates that there is an interesting overlap between global
and local concepts for the class “cutting_trees,” which we can use to describe
what the model learned as the pattern of this class. Simultaneously, we may
manually check that the presented notions appear plausible when we consider
the activity of cutting the tree and its images on the dataset. This is just an
intuition, as we said, and a more systematic evaluation (either manually by
humans or automatically via labels) should be conducted.

® https://github.com/EricFerreiraS/disentangled_representation-concept_ranking
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Fig. 4. Top 5 local concepts X Top 1 Global concept

When we look at the “phoning” class, the linear classifier did not produce an
flattering result (precision of 51%), and when compared to the global and local
concepts, the result was the poorest in the method (about 67%). This result
might indicate two possibilities: the linear model did not segregate the concepts
properly (an issue with the linear model) or there is a lack of concepts that could
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Concepts evaluation between the local (Top 10) and global (Top 10) instances
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Fig. 5. Top 10 local concepts X Top 10 Global concept

better describe this class (issue with concept generation). These concerns will
be investigated upon in future work.

To summarise, our quantitative experimental analysis so far showed that our
approach was able to successfully retrieve the top 10 concepts from disentangled
representation that best characterise the local instances (as per Network Dissec-
tion) as well as the global instances. We assessed the method by comparing the
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existence of concepts in local and global occurrences. In the next section we will
present the ongoing research we are conducting in this area and our next steps.

Mean and Standard Deviation between the approaches

1.0

0.8

0.6

Q
3
g

0.4

02

0.0

©
>
R
‘7\/
<R

Approach

Fig. 6. Mean and Standard Deviation between the Precision

5 Ongoing Work

CNN has shown impressive accuracy in computer vision applications, but the
absence of an explanation for what the model learnt remains an open challenge
for its adoption in high-risk scenarios. This study investigated the potential of



From Disentangled Representation to Concept Ranking 13

building upon disentangled representations to provide a semantically meaningful
interpretation of classification results produced by a CNN in terms of relevant se-
mantic concepts. We demonstrate how even using a linear classifier such as SVM,
we are able to meaningfully rank top ten concepts that characterise not only an
instance, but more generally a class from local disentangled representations.

We define and test a method for extracting not only the top local concepts
but also global ones. We demonstrated that we can identify the top concepts
for an image of a given class, and that these are the same concepts necessary
to best separate this class. For example, with a precision of 95% between the
concepts presented in the images and their class, we have that images categorised
as “riding a bike” contain the top local concepts “bicycle” and “wheel”, and
the same top concepts were necessary to separate this class according to the
linear classification. As a result, we argue that the model has learned those
concepts related to a specific class (and instances of that class). This paves the
way for a concept-driven explanation of classification results using disentangled
representations, although different challenges lie ahead.

For example, we notice that no semantic relationship between extracted con-
cepts can be extracted with our method alone. To this aim, we believe leveraging
an external knowledge base can aid in detecting semantic relationships between
those concepts. We are currently investigating on the use of Conceptnet[6], a
common-sense knowledge graph database, to acquire those relationships, thus
improving the transparency and interpretability of what the model has learned.

Another key challenge is that the human expert’s capacity to explain out-
comes semantically is limited due to a lack of information regarding causal link-
ages between those concepts and their relationships. To tackle this we are also
investigating the possibility of leveraging the extracted concepts and relation-
ships to learn symbolic rules about causality, therefore offering a structural and
human-like way of explaining the results of a decision made by the model.
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