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Abstract. In this paper, we use counterfactual explanations to offer a
new perspective on fairness, that, besides accuracy, accounts also for the
difficulty or burden to achieve fairness. We first gather a set of fairness-
related datasets and implement a classifier to extract the set of false
negative test instances to generate different counterfactual explanations
on them. We subsequently calculate two measures: the false negative ra-
tio of the set of test instances, and the distance (also called burden) from
these instances to their corresponding counterfactuals, aggregated by
sensitive feature groups. The first measure is an accuracy-based estima-
tion of the classifier biases against sensitive groups, whilst the second is a
counterfactual-based assessment of the difficulty each of these groups has
of reaching their corresponding desired ground truth label. We promote
the idea that a counterfactual and an accuracy-based fairness measure
may assess fairness in a more holistic manner, whilst also providing inter-
pretability. We then propose and evaluate, on these datasets, a measure
called Normalized Accuracy Weighted Burden, which is more consistent
than only its accuracy or its counterfactual components alone, consider-
ing both false negative ratios and counterfactual distance per sensitive
feature. We believe this measure would be more adequate to assess clas-
sifier fairness and promote the design of better performing algorithms in
both accuracy and fairness.
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1 Introduction

Machine Learning (ML) models assist decision-making in different applications,
such as recommender systems [I6I8], vehicle localization [7], student grading [6],
credit assessment [I], disease diagnoses [9] and recidivism prediction [3]. These
decisions should be taken impartially across sensitive features, such as religion,
gender, ethnicity and age [20027]. In order to achieve fair outcomes, the ML
models must avoid making decisions based on these qualities. There are several
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challenges in attaining these unbiased model decisions, and we hereby describe
and focus on three of them, namely fairness evaluation, interpretability and
fairness accuracy trade-off:

1. Fairness evaluation: The first challenge refers to the fact that the difficulty
of defining a measure for model fairness assessment lies on its selection.
While there exist at least 20 such measures [8I20], none of them is perfectly
suitable for all situations. More importantly, Kusner et al. [§] argue that
some measures might exacerbate the perceived discrimination, and may not
eliminate the biases entirely even after optimizing for them [2].

2. Interpretability: The second challenge is knowing the models’ features
weighting. The increase in model complexity and capacity to represent highly
nonlinear functions to achieve superior prediction performance has raised
a new challenge, that of providing trustable model explanations to under-
stand how different features are prioritized [BIT4J2T122126]. Given that highly
complex and opaque models may focus on sensitive features to elaborate a
decision (even when the sensitive features are omitted from the data due to
correlations with other nonsensitive, proxy features [8J20/18]), it is important
to obtain model explanations to understand whether this is occurring or not.
A subfield of ML, called ML Interpretability, aims to provide these model
explanations. Specifically, an interpretability technique known as Counter-
factual Explanations (CE) answers the following question: how should an
instance change its feature values so as to switch a model’s predicted label
from an undesired to a desired label? An analogous nontrivial problem to
the fairness evaluation challenge exists for CE generation: there are several
different CE algorithms, each minimizing a distinct cost function and pro-
ducing fairly contrasting CEs [27].

3. Fairness-accuracy trade-off: The third challenge refers to the fact that
altering the model to deter biases naturally found in the datasets, due to
highly correlated sensitive features and labels, may reduce the models per-
formance, leading to a fairness-accuracy trade-off [I3JI8I20].

In this paper, we address these challenges by combining two fairness measures:
one accuracy-based and one counterfactual-based.

In particular, we assume that for each sensitive feature, there are at least two
sensitive groups, e.g. the sensitive feature Sex has two sensitive groups Male and
Female, and that we have a binary classification task. To measure accuracy, we
use predictive equality [27], which states that the False Negative Ratio (FNR),
i.e., the fraction of false negative predictions, should be the same across sensitive
groups. Other accuracy-based fairness definitions, such as predictive parity, are
left for future work.

The CE z’ of an item z is a similar item to x for which the classifier produces
an outcome different than the outcome of x. Let z be an item in a sensitive
group that was falsely predicted to belong to the negative class. Intuitively, the
distance between x and its counterfactual 2’ measures the amount of change
that is needed to counteract unfairness in accuracy, that is, to correctly classify
x in the positive class. We call Burden the average such distance for all items in
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the sensitive group that were falsely assigned to the negative class. In a sense,
Burden captures the cost of achieving fairness.

The main advantages of counterfactual-based fairness are three-fold: first, it
aligns with a fair treatment intuition, since the difficulty of achieving a desired
output among sensitive groups should be similar [§]. This similar difficulty may
be seen as a similar burden value among different groups; second, burden is cal-
culated using a generated CE (z’), which inherently indicates the models features
relevances, providing important information to tackle the models opacity; and
third, it may provide both individual and group fairness assessment [23|, while
other metrics, like statistical parity and equalized odds, focus on group fairness.

Hence, the first contribution of this paper is a study between the FNR and the
measure of burden, where the set of CEs are generated by minimizing different
cost, functions. The study uses 11 fairness-related, binary classification datasets
from four different fields. We analyze the differences in burden among different
CE methods and their relation to FNR. Moreover, the second contribution of
the paper is a new measure, Normalized Accuracy Weighted Burden (NAWB),
that assesses fairness holistically and may be used to optimize classifiers training
and address the accuracy-fairness trade-off challenge.

2 Related work

In this work, two areas converge: machine learning fairness and counterfactual
explainability. From the perspective of machine learning fairness, different ap-
proaches have been taken to both measure and correct biases in different appli-
cations [I8I9120/25/29].

2.1 Fairness and bias measurement

To avoid model discrimination biases, the biases must be first detected [8]. Quy
et al. compiled 15 datasets from different fields that are frequently used for
fairness-related research in ML and use statistical parity, equalized odds and
Absolute Between-ROC Area (ABROCA) to detect biases among a set of sen-
sitive features in each dataset [20]. Machine learning models may amplify the
users input biases according to common user preferences [25]. Zafar et al. relate
the recommendation bias increase to stereotypical-based biases, and highlight
the strong relation of false positive rates with sensitive groups in recidivism
prediction biases against african americans, and in less-paid jobs for women [29].

2.2 Counterfactual explainability

Verma et al. propose a rubric to compare different CE generation algorithms, re-
viewing 39 papers where methods and metrics are discussed [27]. They highlight
the existence of linear and mixed-integer programming CE methods, such as the
Actionable Recourse algorithm by Ustun et al. [26], that provides actionabil-
ity (actionable decisions) with low computational demand, at the cost of using
low-accuracy, linear classifiers.
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Among the metrics discussed by Verma et al. are likelihood (the closeness of
the CE to the data distribution) and sparsity (the number of changed features)
[27]. Related to actionability is the property of feasibility, which considers the
feature direction of change and the plausibility of the obtained feature values.
Linked to sparsity is proximity, which is the inverse of the distance between the
Instance of Interest (IOI) and its CE [12J26]. Finally, faithfulness may also be
prioritized, as it indicates how likely (through likelihood) or justified [I1] a CE
is according to the data. Different algorithms prioritize different metrics.

The Nearest Neighbor Tweaking (NN) method selects the closest positive
ground truth label instance in the training set to the IOI. The Minimum Ob-
servable (MO) method selects the closest counterfactual instance from the whole
dataset (including the test instances with their predicted labels). These two
methods minimize the euclidean distance function and preserve the plausibility
of the feature values [12[28]. The Random Forest Tweaking (RT) method selects
the most frequent counterfactual training instance inside the same leaves that
the IOI falls in, in a Random Forest (RF) classifier, providing plausibility and
faithfulness. The Counterfactual Conditional Heterogeneous Autoencoder (CCH-
VAE) CE method prioritizes likelihood, outputting counterfactual instances that
are likely according to the data. The method uses a variational autoencoder
and creates random perturbations in its latent space. These perturbations are
brought to the original space and become the generated counterfactuals [17].

Other notable more complex methods exist. Model-Agnostic CE (MACE) [4]
delivers best-in-class proximity performance but with the longest computational
times; Growing Spheres (GS) [10] attempts to obtain close counterfactuals by
growing spheres from the I0I; Diverse CE (DiCE) [15] allows users to obtain a
set of CEs instead of a single one, where the set is chosen to provide diverse fea-
ture changes. Local Rule-based Explainability (LORE) is able to provide feature
relevances and CEs through the training of a local rule generation model.

2.3 Counterfactual fairness

At the intersection of these two areas lies counterfactual fairness: a characteristic
of decision processes treating individuals equally in the as-is situation, and in
a world where their sensitive features are different [§]. Currently, CEs provide
insights on why a decision was taken and potential actionability, but cannot in-
dicate whether these decisions are fair [I3]. On the other hand, fairness measures
lack the actionability and feature relevance that CEs ellicit.

Ustun et al. propose an interesting measure between the classifier model and
the instances attributes, and use this to design a fair model. This measure uses
the covariance between the sensitive features values and the distance between
the subjects and the decision boundary. If this covariance is high, that means
the distance between the instances and the decision boundary are highly related,
indicating that the model may be biased according to those features [26]. This
measure is however intended for linear classifiers and assumes a linear relation
between classifiers and features. The authors also present an interesting evalua-
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tion of the relation between the cost of achieving a given counterfactual (cost of
recourse) and split it by false and true negative prediction groups.

Coston et al. argue that traditional measures of fairness, like parity, may not
necessarily lead to fairness in counterfactual scenarios. Therefore, they indicate
that counterfactual reasoning must be implemented to measure fairness, and ap-
ply a set of methods to achieve fairness in a policy design framework [2]. Finally,
Sharma et al. define the counterfactual-based fairness metric called burden, and
indicate its usage for both individual and group fairness assessment. The au-
thors use this metric as part of the fitness function in a genetic algorithm that
generates counterfactuals [23].

3 Methodology

Given a dataset X, with labels Y € {—, +}, + being the desired, positive label,
a classification function f, such that f : X — Y and a set of sensitive features
Siy i €{1,2,..., M}, where M is the number of sensitive features, the accuracy-
based metric of False Negative Ratio (FNR) per sensitive group is defined as
follows:

FNR; = P(f(z) = —|S =s,Y = +), (1)

where FNRy is the false negative ratio of the sensitive group s.
For the counterfactual-based measure, we first formally define the counter-
factual search as [24/12):

x* = argrlnin c(z,2)|f(x) =y fla') =y, (2)

where c(z,2’) is a distance-based cost function, and y’ is the opposite label to y.
The counterfactual reasoning is mainly applied by analyzing whether it is equally
difficult to change the model outcome, from an undesired label f(z) =y = —, to
a desired predicted label f(z') =y’ = +, among sensitive groups or individuals
[23126]. Hence, the counterfactual-based measure may be obtained by calculating
the average cost function ¢(x,2’) with z € X, where X* is the set of instances
belonging to the sensitive feature group s, and the counterfactuals found z’ for
each x. This measure is defined as Burden and is formulated as follows:

1
Burden, = X Z c(xi,xé), (3)
| | zr;, €XS

where Burdeny is the average value of the cost function ¢(.), which may be defined
as the euclidean distance, based on the concept defined by [23].

We propose and examine a combined measure based on Burdengs and FNRy
that could potentially be used to design a fair and accurate classifier. The
proposed measure is called the Accuracy Weighted Burden or AWB. To de-
rive it, we define the set of false negative instances per sensitive group s as:
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Xin ={z € X|f(z) = —, S = 5,Y = +} and multiply Burdens and FNR4 as
shown:
1
AWB, = P(f(z) =[S =Y = +)ry— > dl(xi,x)) (4)
[ Xl ZEXE
z FN
[ Xin| 1 /
AWB, = - d(zi, x}) (5)
{z € X[S=sY = +}| [ X;yl 2

zi€XGy
> d(zi, )
T €Xpy

Tz eX|S=sY =+}|

where ) represents the CE of the z; instance, and function d(.) is the eu-
clidean distance or burden. If we plot Burdeng versus FNRg, and locate each
sensitive group as a point in this plane, a point located in the upper-right corner
would present a higher general bias than one located in the lower-left corner. The
FNRys is the ratio of instances falsely classified as belonging to the negative class,
whilst the Burdeng measures how far the IOI is from an existing, desired coun-
terfactual instance, per group. In this sense, a high FNRg and a high Burdeng
indicates a high number of difficult-to-correctly classify points for a given group
and classifier f. This may be translated to the area of the box formed between
the location of the dots and the origin. This area is calculated by multiplying
these variables, leading to Eq. [0}

By normalizing each of the L features in the dataset inside the [0,1] range, the
range of values for d(.) is [0,L], so we divide Eq.[6]by L to obtain the Normalized
Accuracy Weighted Burden or NAWB:

AWB, (6)

‘ ; d(z;, x})
1€Xh N
NAWB, = Li{zr € X|S =35Y = +}| @

After defining the basic metrics, let us outline the steps of our methodology.
In order to study classifier fairness, for each dataset and classification task, we
test several classifiers and search for the model parameters that provide the best
performance in each case (see section. A single classifier (the one with the best
F1 score) is used per dataset. We then execute a four-step process: (1) Calculate
the FNR per sensitive group, (2) obtain CEs for the false negative instances
using different CE methods (different ways and cost functions in solving Eq. 2,
(3) estimate the aggregated Burden per sensitive group, per CE method, and
(4) study the relation of Burdens and FNRg to provide a holistic view on the
classifier fairness and evaluate AWB, our new combined measure.

The first step of the process is carried out using Eq. [T} where s is the sensitive
group of a feature (Male, Female or White, Non-white, etc.). Ultimately, a fair
classifier would have a similar FNRg among the different s values belonging to
each S sensitive feature.

The second step is using NN, MO, RT and CCHVAE to generate the CEs.
We concentrate on the four mentioned algorithms, as they represent a set of
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relevant objectives currently prioritized in CE algorithms, namely proximity,
feasibility and faithfulness (through likelihood), whilst maintaining relatively
low complexity and computational times. These methods are applied to the
false negative instances (Xpy), i.e, obtaining a set of four CEs for each of them.

The third step is calculating the aggregated burden by sensitive feature
Burdeng using Eq. [3] A higher burden for a given group of subjects, in com-
parison to another, would mean that the individuals belonging to that group
have a higher difficulty, in terms of the distance, to achieve the positive class,
according to the model f.

In the fourth and final step, we discuss these metrics, presenting their eval-
uation on the fairness-related datasets. We analyze the FNRg per dataset and
evaluate the Burdeng per dataset and CE method. We then relate both measures
and study their correlation and finally examine the combined measure AWBg and
its normalized version NAWB.

4 Empirical Evaluation

We describe here the datasets based on [20] and discuss the obtained results.
The datasets, their main sources, and codes are available at the GitHuHﬂ

4.1 Datasets

The datasets and relevant characteristics are shown in Table[1} Preprocessing is
carried out according to [4120], reducing the number of features and instances by
removing duplicates, missing values and low-importance features. Further details
may be observed in the repository. The test group and true positive distributions
are obtained after preprocessing.

4.2 Results and discussion

In this section we show the classification performance, analyze the FNRg per
dataset, discuss the Burdeny measure per dataset and CE method, and finally
present and analyze an accuracy-counterfactual combined fairness measure.

Model selection. We implemented four different types of classifiers and used
grid search with 5-fold validation to identify the optimal parameters according to
the F1 score. The implemented classifiers are Support Vector Machines (SVM),
Decision Trees (DT), Multilayer Perceptrons (MLP) and Random Forests (RF).
The RF classifier achieved the best performance for 5 out of the 11 datasets
(shown in Table 2 along with the model parameters), while the MLP classifier
achieved the best performance for the other 6 datasets (shown in Table [3| along
with the model parameters). We used the best classifier for each dataset.

FNR; evaluation The dataset is split into 70% train and 30% test. The models
are used to predict the label of positive ground truth test instances.

3 https://github.com/alku7660/counterfactual-fairness
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Table 1: Datasets instances, features, labels and sensitive groups distributions

Dataset Items Classes Sensitive Test Group True Positive
(Feat.) Groups Distribution Distribution
] Male/Female 9112/4455 2848/499
Adult 4?1854)2 +<> 550011{55813]) White/Nonwhite 116661901 3032/315
= <925/25-60/>60  2214/10500/853  31/3102/214
KDD 299285 +:>50kUSD Male/Female 43193/46593 4374/1180
Census (41) -:<50kUSD White/Nonwhite 75268/14518 5052/502
1000  +:low risk
German (21)  -thigh risk Male/Female 208/92 55/28
60420  +:low risk
Dutch (12)  -thigh risk Male/Female 9090,/9036 6024,/3401
Bank 45211  +:deposits Sing./Marr./Divor.  3785/8171/1608 574/849/196
(17)  -mo deposit  <25/25-60/>60  244/12939/381 68/1384/167
) Male/Female 3547/5350 854/1118
Credit 3(02040)0 +_'i;; gﬁ‘sﬂt Marr./NotMarr. 41314756 980/992
' Oth./HS/Uni./Gra. 143/1435/4122/3187 10/355,/1006/601
Compas 7214  +:improved Male/Female 1276/308 624/209
p (52)  -wecidivist Caucasian/African 619/965 379/454
. 101766 +:recovered
Diabetes (50)  -readmitted Male/Female 6326/7527 4743/5767
Student 395 +:high grade  Male/Female 55/64 40/45
(33) -:low grade <18/>18 93/26 66/19
32593 —:pass exam
Oulad (12)  -:fail exam Male/Female 5142/4303 2393/2061
Law 20798  +:pass bar Male/Female 3426/2703 3274/2557
(12) -:fail bar ~ White/Nonwhite 5148/981 4990/841

The FNRy are shown in Fig.[I} In the Adult dataset, the highest FNRg cor-

responds to the <25 age group. This indicates that younger adults are expected
to earn less than those with longer careers and higher education, both correlated
to age. Additionally, Females present a considerable unfavorable bias, relative
to Males. Non-whites are unfavored, though not as Females and young people.
A similar behavior is observed in the KDD Census dataset FNRg with respect
to the unfavored Female and Non-white groups.

An inverted bias behavior is observed in the German and Dutch datasets,
where Males are more likely to be incorrectly classified with bad credit or low-
level occupation, respectively, than Females. The FNRg is double for Males in
the German dataset (similar in the Oulad dataset), while it is close to 5 times
in the Dutch dataset, compared to Females.

In the Bank and Credit datasets, all FNRg are considerable. In the Bank
dataset the >60 age group has the lowest FNRy (< 1%), while in the Credit
dataset the Other education group has the highest FNRg (> 80%).

In the Compas dataset, the African-Americans and Females are more than
twice as likely to be incorrectly classified as recidivist as Caucasians and Males,
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Table 2: Datasets with RF as best classifier and F1 score

Dataset Adult KDD Census Dutch Bank Student
F1 0.83 0.87 0.84 0.86 0.70
Max. Depth 10 10 10 10 2
Min. Samples/Leaf 1 5 3 1 5
Min. Samples/Split 5 5 5 2 2
Num. Trees 100 100 50 200 200

Table 3: Datasets with MLP as best classifier and F1 score
Dataset Credit German Diabetes Oulad Law Compas
F1 0.72 0.70 0.61 0.67 0.82 0.66
Activation @ Tanh ReLU Logistic Logistic Tanh Tanh
Hidden Layers (50, 1) (100, 10) (100, 2) (100, 10) (50, 1) (100, 10)
Solver Adam SGD SGD SGD Adam Adam

False Negative Rate per Sensitive Group (FNRy)

Adult KDD Census German Dutch
0.20
0.40 4
0.20 0.109
0.00 = 0.00 - B B
Bank Credit Diabetes
0.75 4
0.10
0.50 4
0.05 4
0.25 4
0.00 - 0.00 -
Student Oulad
0.60 4 0.60 4
0.40 4
0.40 4 0.40
0.20 020 1 0.20
0.00 - 0.00 - 0.00 -
= Male <25 >=18 isMarried: True Other = Graduate
= Female 25-60 Single = isMarried: False = HS = African-American
White —_— >60 == Married isMale: True University Caucasian
Non-white —_— <18 = Divorced = isMale: False

Fig. 1: FNR for each sensitive group
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respectively. The Diabetes dataset shows the highest Females FNRg caused by
the low classifier performance. In the Student dataset, the highest FNR is ob-
served in the >=18 age group (> 60%), in comparison with the lower FNRq
for the Female, Male and <18 groups with 40% or lower. Finally, in the Law
dataset, all FNRg are close to 20%, except for the Non-white group with 50%.

Burdeng evaluation Fig. [2] present datasets in rows and CE methods in
columns. In general, all datasets show a similar relative burden among sensi-
tive groups for NN and MO methods, since they prioritze distance and pick the
counterfactual from the pool of observations (MO’s Burdens measure is lower
because it also considers test instances). RT and CCHVAE present a relative
different Burdeng behavior in both magnitude and relative position among sen-
sitive groups, since these two prioritize frequency and likelihood, respectively,
over proximity. The CEs obtained through CCHVAE are particularly further
from their respective IOIs because they are closer to the data distribution cen-
ters to maximize likelihood. Specifically, for the Adult dataset, in the age feature,
we may see that >60 has a high Burdeng, compared to <25 and 25-60, specially
in the NN, MO and RT methods. This could indicate a bias against older people
who may have a higher difficulty of achieving a high income.

In the KDD Census dataset,The relative Burdens magnitude is the same
for all methods: higher for Females than Males and higher for Non-whites than
Whites. The KDD Census dataset presents a similar behavior in terms of relative
burden with the Law dataset.

In the German dataset, the correlation of burden with FNRg is inverted in
CCHVAE, while NN, MO and RT preserve the same higher bias for Males than
Females. In the Dutch dataset, Burdeny is higher for Females, while the FNRg
ratio was higher for the Males (Fig. .

In the Bank dataset, there is a higher burden for the <25 and Divorced
groups relative to their counterparts in the NN, MO and RT methods, however,
it is the >60 group that has a higher burden according to CCHVAE. These
behaviors are contrasting with the FNRy in the age groups, because the >60
has a significantly lower FNR.

In the Credit dataset, the behavior among groups is similar to the FNR; rel-
ative behavior in the NN, MO and RT methods. However, it drastically changes
in the CCHVAE, where the burden is high and similar across groups.

In the Compas dataset note that the RT FNRg shows a different relative
magnitude: the Males and African-Americans FNRg is higher, whilst the burden
is higher for Females and Caucasians.

In the Diabetes dataset the FNRg of Females is higher than that of Males
(even though the data is balanced among genders) but Burdeng shows a relative
similar behavior for both Females and Males.

In the Student dataset, all methods showed a similar relative Burdeny be-
havior, which is a strong contrast with the highly unfavored age group of >18
according to FNRg. Finally, in the Oulad dataset, Females present a slightly
higher Burdeng than Males in all methods except RT.
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each sensitive group
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FNR;s and Burdeng The relation between FNRg and each CE method’s Burdeng
is observed in Fig. [3]for some of the datasets. Each scatter plot shows the FNR,

in the x-axis and Burdeng in the y-axis. The dots represent the sensitive groups

location in the Burden— F'N R plane. Each color indicates a sensitive feature and

each dot has its group name. Positively correlated Burdens; and FNRg measures

show dots of the same color (belonging to the same feature) scattered across the

positive diagonal, whilst a negative correlation shows these dots closer to the

negative diagonal. For example, in the Diabetes dataset, Male and Female dots

are located in the negative diagonal in NN, and RT, whilst in the positive one

in MO and CCHVAE.

Burdeng vs. FNR;
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Fig. 3: False Negative Ratio (FNR;) versus Burden (Burdens)

A dot located in the upper-right corner of Fig. |3| has the highest area and
therefore the highest general bias. This area measure is the Accuracy Weighted
Burden or AWB, shown in Eq. [f] We then calculate its normalized version,
NAWRBg, for all the datasets and models and show it in Fig. [d

Normalized Accuracy Weighted Burden (NAWB) The NAWB, measure
is not as sensitive to the CE method used, due to the FNR factor, however,
the magnitude may still change significantly. This is observed throughout all
the datasets. In the Adult dataset, Females, Non-whites and <25 are the most
unfavored in terms of bias, and the ordering of the age groups is the same across
methods. This was not true for the Adult Burden, measure alone, in which (see
Fig. |2)) the Burdeng was higher for the >60 group. In the German dataset the
NAWB; measure shows a higher bias against Males than Females than FNRg
or Burdeng alone indicating that the difficulty of each IOI to change its label
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brings an added level of bias against Males to the already higher ratio of false
negatives in that group, compared to Females. This indicates that it is important
to consider both metrics and in that way improve the overall perspective on the
relative biases among groups. Additionally, the consistency between these rela-
tive measures is greatly improved. For example, the German and Dutch datasets
Burdeng measure showed a different behavior among groups, compared to the
more holistic NAWB; measure. However, in terms of magnitude, the NAWBg
measure indicates a higher value for the RT and CCHVAE methods, which is
still justified by the objectives they prioritize, as mentioned before. This may
indicate that, although relative NAWBg among the groups is more consistent
across diverse CE methods, the magnitude is still dependent on the CE method.
Further improvements may be done on normalization of the measures with re-
spect to each sensitive feature, or across the features, for example, considering
the NAWBg fraction over the sum of all NAWBg to make this metric less depen-
dent on which CE method is applied.

5 Conclusions and future work

In this study, we performed an evaluation of four different CE methods to assess
the burden on different sensitive groups due to a classifier model. The distance
between the CEs and the instances are seen as a measure of fairness through
counterfactual reasoning. We compared this measure with an accuracy-based
fairness measure, the False Negative Ratio per sensitive group, and propose a
combined product of these measures that attempts to more consistently mea-
sure the (un)fairness of classifiers. Hence, we proposed NAWB; as a normalized,
accuracy and counterfactual-based measure to determine the existence of classi-
fier bias, proving that it may enhance the evaluation of biases among sensitive
groups. We assessed the difference among the groups burden identified by dif-
ferent CE methods, and that future work may deal with a further normalization
process to make this measure independent of the CE method used.

Additionally future work should also consider other methods, such as MACE,
GS, DiCE and LORE. Finally, an extension to multi-class tasks and the applica-
tion of the combined measure in the design of a classifier may be done, in order
to make a generalized system that optimizes for both fairness and accuracy.
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Fig. 4: Normalized Accuracy Weighted Burden (AWB) for each dataset and sen-
sitive group
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